Research output and scientific impact of global warming research from 1980 -2007: an informetric analysis1

Dennis Ocholla² – <u>docholla@pan.uzulu.ac.za</u> and Lyudmila Ocholla ₃ – <u>locholla@pan.uzulu.ac.za</u> ,University of Zululand, South Africa

Abstract

The paper considers global warming, and uses both descriptive and evaluative informetric techniques to analyse research in the domain using published literature as indexed and reflected in three key bibliographic databases in the Web of Science, namely the Science Citation Index, Social Sciences Citation Index, and the Arts and Humanities Citation Index from 1980 to 2007. The study covers all the publications on global warming appearing in the selected databases, and analyses them according to country, source, document type, subject, language counts, and publication trends over the period. This paper provides useful information for the development of research policy and evaluation in a burgeoning domain that is likely to benefit, researchers, research policy and information services

Key words: Global Warming; Informetrics; Bibliometrics; Research; Scientific Impact

1. Introduction

Global warming is increasingly becoming an issue and concern that invites theoretical and practical paradigms from a number of different disciplines in national, regional and global academic circles and as witnessed in discussions on its nature, type, causes, consequences, interventions and preventions in popular websites 4 . Formally, it may be defined as the "observed and projected increases in the temperature of Earth's atmosphere and Oceans"(Time for Change: ND)5. A more generally held view is that global warming is an ethical

5 See <u>http://timeforchange.org/definition-for-global-warming-what-is-global-warming</u>

^{1 .} A shorter version of this paper was presented at the Fifteenth Jubilee Crimea Conference 2008, Crimea, Sudak, Ukrain, 7th - 15th June(see http://high.gpntb.ru/win/inter-events/crimea2008/eng/cd/157.pdf)

^{2[1]} Dennis Ocholla, PhD, is professor and Head of the Department of Library and Information Science as well as Vice – Dean, Faculty of Arts University of Zululand. He is also the Editor-in- Chief, South African Journal of Libraries and Information Science, South Africa.

³ Lyudmila Ocholla is Information Librarian – Science, University of Zululand Library, South Africa.

^{4 &}lt;u>http://timeforchange.org/definition-for-global-warming-what-is-global-warming</u> and <u>http://www.ucsusa.org/global-warming</u>

issue arising from human-induced activities that affect climate change (Brown, 2003). Such would argue that global warming is mainly caused by the "*burning* of fossil fuels, such as oil, coal and natural gases, as well as deforestation" (e.g. Van Reenen, 2007:.4).

Scientifically, the cumulative increase of greenhouse gases leads to solar radiation being trapped within the earth's atmosphere, which in turn enhances the greenhouse effect, warming the earth up. Ultimately, the planet's entire ecosystem, plants, animals and humans alike, are increasingly exposed to danger in a number of ways 6, such as "the increase of the temperature on Earth by about 3° to 5° C (34° to 41° Fahrenheit) by the year 2100, and rise of sea levels by at least 25 meters (82 feet) by the year 2100". It is predicted that nations that are already faced with a myriad of challenges, such as those in Africa, are likely to suffer most from the effects of global warming. Among other reasons, it is believed that these countries would get involved in interventions too little, too late. For example, "Africa lost over 9% of its trees between 1990 and 2005. This represents over half of global forest loss, despite the fact that the continent accounts for just 16% of global forests", according to the UN Survey of World Forests (Van Reenen, 2007:.6). Separate reports predict that regional water supplies will decline, livestock and human diseases will increase, flood related diseases will increase, and animal and crop production will decline. Other affected areas will include coastal zones, fisheries and biodiversity. Perhaps it makes sense to adhere to the advise by G8 president Angela Markel (Van Reenen, 2007:.7) who stated that "we need to work together to get as many countries across the world as possible to undertake to do something about global warming". Thus information providers and researchers from as many different disciplines as possible should engage in attempts to tackle problem.

According to Lancaster (1991), evaluating research productivity involves three processes, namely: an analysis of the number of publications produced and the quality of the sources in which the published material appears; assessing how much of the work is individual, group or organizational; and determining the quality of the citations of the published works. Informetric research provides an

⁶ See http://timeforchange.org/effects-of-global-warming

opportunity for research diversification and for the support of global warming research because it presents up-to-date research and publication indicators using multiple variables that include international, regional, national, disciplinary and individual issues, trends and challenges. This study analyzes and evaluates the patterns and trends of global warming research according to publications that appear in the Web of Science database (Science Citation Index-SCI, Social Science Citation Index-SSCI and Arts and Humanities Citation Index-AHCI) from 1980 - 2007 in order to inform research policies, evaluations and decisions on global warming. This paper compares the research output according to several variables and the scientific impact of authors, institutions and countries. The study identifies the most prolific and influential researchers, countries and institutions involved in research on global warming, and compares the productivity and scientific impact of institutions and countries. The paper attempts to answer the following eight research questions: Which countries are involved in global warming research in general and in Africa in particular? Which are the most productive countries in this research domain? Where is research on global warming largely published? Which are the most productive organisations and institutions in global warming research? Who are the most productive authors of global warming research publications? What is each author's scientific influence? Which is the most cited research publication? And what are the trends and patterns of the growth of citations vis-à-vis the papers?

2. Literature review

The term global warming has received significant attention from leading scientists in recent years (Zhang et al., 2006; Omer, 2007; Sautter and Switzer, 2008) as well as criticism from those advancing the theory that increases in the temperatures on Earth are the product of natural forces that have nothing to do with anthropogenic processes (Tao et al. 2006). The focus on climate change has since been used as a scientific platform among atmospheric, natural and social scientists to coin the definition and characteristics of global warming and climate change, such that it is now defined as the increase in the average temperature of the Earth's nearsurface air and oceans over the last 900 000 years, particularly in the midtwentieth century (Hussain and Ansari 2006: 192-193; Ren et al. 2007:890). Nodvin (2008) and Reay (2008) have also voiced their characterization of global warming by distinguishing global warming from climate change. The authors have separately described global warming as the combined result of the anthropogenic emission of greenhouse gases (carbon dioxide, methane and nitrous oxide) coupled with changes in solar irradiance. Nodvin (2008) views climate change as a product emanating from global warming as evidenced in weather (temperature, precipitation, frequency of heat waves, etc) and other climate system components, such as Arctic sea ice. The authors have warned that the impact of global warming can be characterized according to short-term (seasonal) and periodic (long-term) effects.

There is controversy, however, still dogging agreements on the real **cause** of global warming, with most scientists favouring anthropogenic processes as the main culprit (Tao et al. 2006; Omer 2007; Zhang et al. 2006), and others attributing the cause to natural forces. The increasing consensus is that "global warming is caused by the emission of greenhouse gases. 72% of the totally emitted greenhouse gases is carbon dioxide (CO2), 18% Methane and 9% Nitrous oxide (NOx). Carbon dioxide emissions therefore are the most *important cause of global warming*⁷⁷. Some scientific results indicate that even if greenhouse gases were stabilized at 2000 levels, a further warming of about 0.50C (0.90F) would still occur (Robick et al. 2003; Berger et al. 2005) justifying the arguments fostered by Earth Science skeptics that global warming is not solely a human affair. Other hypotheses that depart from the main consensus view suggest that most of the increase in temperature is as a result of variations in solar activity. Despite these controversies, there is the possibility of a universal conclusion stemming from the Intergovernmental Panel of Climate Change (IPCC, 2007), adopted recently in Paris, which stated that: "most of the observed increase in globally averaged temperatures since the mid-20th Century is very likely (90% probability) due to the observed increase in anthropogenic greenhouse gas concentrations..." (Mathews 2007:1).

There is a lot of research going on that demonstrates the atmospheric and anthropogenic **impact** of greenhouse effects on crop production and water use (Tao et al. 2007:94); climate changes, floods and drought (Zhang et al. 2006); and on the sustainable governance of public resources. The ecological response of organisms to climate change have been noted to show adverse heterogeneity in terms of phonological and physiological characteristics, the variability in species distribution, the composition of and interactions within communities, and the dynamics and structure of the ecosystems (Walther et al. 2002). Some researchers have highlighted the need for energy technologies that address environmental utility and the quality of human live(Sautter and Switzer, 2008). Although the rise in the Earth's temperature is the main cause of global warming and climate change, far reaching socio-economic (low

⁷ see <u>http://timeforchange.org/CO2-cause-of-global-warming</u>

crop yields, declining food production, cardiological diseases) and environmental (floods, tsunamis, tornados, drought, depletion of coral reefs etc) consequences have been and are being experienced in most parts of the world, and this is what, in our view, has seen the growth of atmospheric related research and the use of modern methodologies to unearth the mystery of global warming.

Walther et al. (2002) have revealed that freeze-free periods in most of the mid-and high-latitude regions are lengthening. Satellite data has revealed a 10% decrease in sun cover and ice extent since the late 1960's, which has also exacerbated the spatial and temporal regime of precipitation affecting organisms with diverse geographical distributions (Walther et al. 2002). Some of the ecological impacts of climate change were revealed in the phonological patterns of and trends of birds, butterflies and wild plants, where, earlier breeding or first singing of birds, earlier arrival of migrant birds and earlier appearance of butterflies are attributed to the early timing of spring activities (Walther et al. 2002). **Invasions** of non-native species from adjacent habitats and a **shift** in community composition (like the recent increase in woody shrub density, extinction of previously common animal species and increases in formerly rare animal species) in the Sororan desert of the southwestern United States have been catalyzed by recent climatic shift (Walther et al. 2002).

In his lamentation on climate change, Mathews (2007) wrote an article on seven steps to **curb global warming**, and he reiterates that all the initiatives aimed at curbing further man-made catastrophes should be focused on driving down greenhouse gas emissions by 2020. This view is also supported by Tim Flannery (cited in Mathews 2007) in his book on global warming ('The Weather Makers'), where he opined that we should reduce our CO_2 emissions by 70% by the year 20508. Some of the steps outlined are as follows:

- 1. Designing a system that imposes tax on carbon emissions, ratified by a global treaty and enforced by a newly created global authority with preference to the Kyoto model that operates outside the UN system.
- 2. Monitoring greenhouse gas emissions through global satellite monitoring. This mechanism would ensure that there is honesty in operating hybrid carbon permits and tax systems.
- 3. Compensating developing countries for preserving a vast area of tropical rainforests that act as an important source of 'carbon sink'.
- 4. Promoting the development of biofuels as a global alternative and supplement to fossil fuels. This, if implemented by the various governments and industrial agencies, will significantly increase the

⁸ http://timeforchange.org/CO2-emissions-by-country

use of biofuels by 10% in 2010, and account for 20% by 2020, rising to 50% of (reduced) consumption of transport fuels by 2050.

5. Promoting the production of renewable energy by setting up markets for solar or wind energy and biofuels (vegetable sources, Jatropha, palm oil, soy bean etc.), which have great potential in tropical countries. The development of these sources for alternative electricity and fuel should not be limited to expanding the market but also to the ability to enhance initiatives that remove trade barriers in marketing the alternative and supplementary energy sources (Mathews 2007:4247).

The two most renowned global initiatives currently under the UN convention are the Intergovernmental Panel on Climate Change (IPCC) - mandated with designing a framework where successive scientists report on global warming; and the UN Framework Convention on Climate Change (UNFCCC), adopted in 1992 at Rio Earth summit and agreed upon by the Kyoto protocol which originated from the UN Conference on Climate Change held in Kyoto, Japan, 1997, to directly reduce the emission of CO_2

3. Method and materials

This paper uses both descriptive and evaluative informetric techniques to analyse global warming research using published literature as indexed and reflected in three key bibliographic databases selected from the Web of Science, namely the Science Citation Index, the Social Sciences Citation Index and the Arts and Humanities Citation Index. The Web of Science (SCI, SSCI & A&HCI) indexes the most important, credible and influential research publications, mainly in the form of articles, that are assumed to exhibit a significant impact factor on a given discipline. It consists of over 8,830 titles of records from 230 disciplines with 6,125 active journals and 145 highly cited book series from SCI, 1800 active journal titles and 30 highly cited book series in SSCI and 1,130 active journals and 15 highly cited book series in A&HCI. The study covers all the publications on global warming that appear in the selected databases and all the different types of documents in which the publications appear. The country in which each journal was published was used as an indicator of the origin of global warming research output, and institutional productivity was calculated by counting the frequencies of the institutional occurrences in the authors' address field. The geographic distribution of authors was established in order to determine the author's country of origin and to find the most productive country and geographical region by using authors' addresses. Whereas it was possible to use several related search terms on the subject, such as the greenhouse effect and climatic change, among others, these search terms captured fairly limited records and most of the records were duplicated in the global warming search term. We therefore settled on 'global warming' for the search

term because of its encapsulation of the research theme. Data analysis largely depended on ISI data sets, where relevant data was mined by using the search term 'global warming' and limited to records published between 1980 and 2007, and thereafter presented under the categories featured in Tables 1-6 and Figures one and two below. Further analysis was done by using citation analysis and h-index for impact factor determination. Rousseau (2008:252), defines citation analysis as that "subfield of bibliometrics where patterns and frequencies of citations, given as well as received are analyzed. Such an analysis is performed on the level of authors, journals, scientific disciplines and any other useful unit or level. Citation analysis further studies relations between cited and citing units (documents, authors, countries etc.)". As far as h- index is concern it was developed by Jorge Hirsch, 'a physicist at UCSD, as a tool for determining theoretical physicists' relative quality'. It is an "index that quantifies both the actual scientific productivity and the apparent scientific impact of a scientist. The index is based on the set of the scientist's most cited papers and the number of citations that they have received in other people's publications. The index can also be applied to the productivity and impact of a group of scientists, such as a department or university or country" (h-index 2008)9

3. Results

The results are presented in sections 3.1 to 3.6, and illustrated in Tables 1-7 and in Figures 1 and 2.

3.1. Global warming according to country research productivity

Fifty eight countries are displayed in Table 1. Fifty eight country name value(s) are outside the display option while 1024 records/items do not contain data in the field analysed. Ranking is made by publication/record counts.

No.	Rank	Country Territory	Record Count	% of 7205	Sum of items cited	Average per item	Average per year	H- Index
1	1	USA	2572	35.70%	48,086	18.69	1717.36	92
2	2	ENGLAND	834	11.58%	15,871	19.03	566.82	61
3	3	JAPAN	546	7.58%	3,546	6.49	197	26
4	4	CANADA	441	6.12%	6,461	14.62	340.05	41
5	5	GERMANY	389	5.40%	6,832	17.56	379.56	39
6	6	AUSTRALIA	278	3.86%	5,861	21.08	293.05	35
7	7	FRANCE	230	3.19%	3,901	16.96	216.72	29
8	8	PEOPLES R CHINA	229	3.18%	1,306	5.7	76.82	18
9	9	NETHERLANDS	193	2.68%	3,297	17.08	183.17	30
10	10	SWEDEN	168	2.33%	2,568	15.29	142.67	23
11	11	NORWAY	134	1.86%	1,661	12.4	92.28	21
12	12	RUSSIA	122	1.69%	1,823	14.94	113.94	21
13	13	INDIA	118	1.64%	959	8.13	50.47	14
14	14	SWITZERLAND	117	1.62%	2,281	19.5	126.72	28

Table 1: Global warming publications count by country.

9. <u>http://en.wikipedia.org/wiki/Hirsch_number#Definition_and_purpose</u>

15	15	ITALY	102	1.42%	1,266	12.41	84.4	17
16	16	DENMARK	96	1.33%	1,793	18.68	112.06	22
17	17	SCOTLAND	90	1.25%	1,653	18.37	91.83	20
18	18	SPAIN	86	1.19%	895	10.41	63.93	16
19	19	SOUTH KOREA	78	1.08%	323	4.14	20.19	10
20	20	AUSTRIA	74	1.03%	711	9.61	41.82	16
21	21	BRAZIL	73	1.01%	1,460	20	73	20
22	22	NEW ZEALAND	71	0.99%	885	12.46	44.25	16
23	23	BELGIUM	67	0.93%	575	8.58	31.94	13
24	24	FINLAND	61	0.85%	869	14.25	54.31	15
25	25	SOUTH AFRICA	46	0.64%	934	20.3	51.89	13
26	26	TAIWAN	39	0.54%	365	9.36	24.33	9
27	27	TURKEY	32	0.44%	142	4.44	10.14	7
28	28	WALES	30	0.42%	461	15.37	25.61	9
29	29	ISRAEL	29	0.40%	521	17.97	34.73	10
30	30	POLAND	26	0.36%	263	10.12	17.53	9
31	31	PORTUGAL	25	0.35%	214	8.56	14.27	7
32	32	ARGENTINA	23	0.32%	255	11.09	17	9
33	32	MEXICO	23	0.32%	150	6.52	10	7
34	34	GREECE	21	0.29%	127	6.05	8.47	6
35	35	CZECH REPUBLIC	20	0.28%	140	7	9.33	7
36	35	IRELAND	20	0.28%	492	14.91	30.75	11
37	35	THAILAND	20	0.28%	193	9.65	10.16	4
38	36	PHILIPPINES	18	0.25%	173	9.61	10.81	6
39	37	HUNGARY	14	0.19%	154	11	11	4
40	37	KENYA	14	0.19%	201	14.36	11.82	7
41	37	NORTH IRELAND	14	0.19%	200	14.29	13.33	9
42	38	SINGAPORE	13	0.18%	47	3.62	4.27	4
43	39	CHILE	12	0.17%	162	13.5	18	4
44	40	ICELAND	10	0.14%	53	5.3	4.82	3
45	40	INDONESIA	10	0.14%	31	3.1	1.72	3
46	40	SAUDI ARABIA	10	0.14%	39	3.9	2.6	2
47	41	ESTONIA	9	0.12%	119	13.22	19.83	4
48	42	BANGLADESH	8	0.11%	61	7.62	4.36	3
49	43	COLOMBIA	7	0.10%	50	7.14	4.17	5
50	43	EGYPT	7	0.10%	18	2.57	1.5	3
51	43	MALAYSIA	7	0.10%	81	11.57	6.23	3
52	44	PANAMA	6	0.08%	499	83.17	55.44	5
53	45	COSTA RICA	5	0.07%	685	137	76.11	4
54	45	SLOVAKIA	5	0.07%	25	5	2.5	2
55	45	SRI LANKA	5	0.07%	14	2.8	1.27	2
56	45	TANZANIA	5	0.07%	155	31	19.38	3
57	45	USSR	5	0.07%	227	45.4	12.61	3
58	45	VENEZUELA	5	0.07%	193	38.6	13.79	4

Sums of items cited(SIC) means the total number of items cited from 1980-2007. Average cites per year(ACY) refers to the total number of citations made to items in a given year while average citations per item(ACI) refers to the number of times an item was cited.

3.2. Sources of Global warming research

A total of 1558 journal titles on global warming were identified during this period of study. 1498 source titles were outside the display option.

Table 2.	able 2. Global Warning Research I ubications by bource										
			Record	% of	Sum	Av. Per	Av.Per	H-			
Number	Ranking	Source	Count	7205	Cit.	ltem	Year	Index			
1	1	NATURE	199	0.02762	10138	50.44	362.07	50			
2	2	GEOPHYSICAL RESEARCH LETTERS	175	0.024289	2814	16.08	140.7	27			
3	3	CLIMATIC CHANGE	161	0.022346	2446	15.19	122.3	27			

Table 2: Global Warming Research Publications by Source

4	4	SCIENCE	137	0.019015	4560	33.28	228	38
5	5	NEW SCIENTIST	116	0.0161	16	0.14	0.62	2
6	6	ENERGY POLICY JOURNAL OF GEOPHYSICAL	113	0.015684	850	7.52	42.5	16
7	7	RESEARCH-ATMOSPHERES	112	0.015545	2220	19.82	123.33	27
8	8		104	0.014434	2653	25 51	147 39	28
o o	å		07	0.013463	1516	15.63	108.20	25
9	9		97	0.013403	1510	15.03	100.29	20
10	10	CHEMICAL & ENGINEERING NEWS	96	0.013324	38	0.4	1.65	3
11	11	ENERGY CONVERSION AND MANAGEMENT	71	0.009854	299	4.21	17.59	8
12	12		61	0.008466	0	0	0	0
12	12	BUILETIN OF THE AMERICAN	01	0.000+00	0	Ū	0	Ŭ
13	13	METEOROLOGICAL SOCIETY ENVIRONMENTAL SCIENCE &	57	0.007911	1365	23.95	71.84	16
14	13	TECHNOLOGY	57	0.007911	355	6.23	17.75	12
15	14	GLOBAL AND PLANETARY CHANGE	55	0.007634	752	13.67	41 78	16
16	15		52	0.007004	2225	10.07	130.88	18
10	10		52	0.007217	464	42.73	100.00	10
17	16	PROCEEDINGS OF THE NATIONAL	50	0.00694	401	9.22	32.93	13
18	17		40	0.006801	1/187	30.35	87 47	20
10	10		49	0.000001	600	30.33	07.47	20
19	10		40	0.006364	690	15	30	14
00	40			0 000407	100	40.04		40
20	19	CLIMATOLOGY	44	0.006107	468	10.64	26	13
21	20	ATMOSPHERIC ENVIRONMENT	41	0.00569	425	10.37	28.33	10
22	21	CHEMICAL WEEK INTERNATIONAL JOURNAL OF LIFE	38	0.005274	1	0.03	0.08	1
23	21	CYCLE ASSESSMENT GLOBAL ENVIRONMENTAL CHANGE-	38	0.005274	122	3.21	15.25	6
24	22	HUMAN AND POLICY DIMENSIONS	36	0 004997	329	9 14	18 28	11
25	22	SCIENCE OF THE TOTAL ENVIRONMENT	36	0.004997	159	4 42	8.83	7
26	22		25	0.004959	709	22.4	52.2	15
20	23		20	0.004030	1 30	22.0	0.74	10
21	24		32	0.004441	140	4.62	0.71	0
28	24	MARINE POLLUTION BULLETIN	32	0.004441	162	5.06	8.53	1
29	25	ECOLOGICAL ECONOMICS	31	0.004303	340	10.97	24.29	11
30	26	CHEMOSPHERE	30	0.004164	347	11.57	19.28	10
31	26	ECOLOGY PALAEOGEOGRAPHY PALAEOCLIMATOLOGY	30	0.004164	1173	39.1	65.17	15
32	26		30	0.004164	450	14 52	26 47	12
22	20		20	0.004104	-50	2.26	20.47	12
33	27		20	0.003000	00	2.30	3.00	4
34	27		28	0.003886	628	22.43	33.05	12
35	28	JOURNAL OF BIOGEOGRAPHY	27	0.003747	357	13.22	22.31	11
36	28	RENEWABLE ENERGY	27	0.003747	95	3.52	6.33	5
37	29	TCE	26	0.003609	0	0	0	0
38	30	ECOLOGICAL MODELLING ENVIRONMENTAL HEALTH	25	0.00347	250	10	13.89	11
39	30	PERSPECTIVES INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE	25	0.00347	665	26.6	39.12	12
40	30	INTERNATIONALE DU FROID	25	0.00347	105	4.2	6.56	5
41	30	SCIENTIFIC AMERICAN	25	0.00347	112	4.48	5.89	5
42	31	BIOMASS & BIOENERGY	24	0.003331	229	9 54	13 47	q
12	21	GEOLOGY	24	0.000001	653	27.21	26.29	12
43	21		24	0.0000001	653	27.21	30.20	12
44	31		24	0.003331	553	23.04	34.50	11
45	31	ABSTRACTS OF PAPERS OF THE	24	0.003331	210	8.75	12.35	10
46	32	AMERICAN CHEMICAL SOCIETY AGRICULTURAL AND FOREST	23	0.003192	1	0.04	0.05	1
47	32	METEOROLOGY AGRICULTURE ECOSYSTEMS &	23	0.003192	186	8.09	10.94	8
48	32	ENVIRONMENT	23	0.003192	241	10.48	14.18	8
49	32		23	0.003102	89	2 96	3 78	6 A
-10	52		20	0.000132	00	2.30	0.70	0
50	32	SOCIETY OF JAPAN	23	0.003192	250	10.87	14.71	9

Table 3: Publications on Global Warming by Document Type	
Type in Web of Science 1980-2007	

RECORD COUNT	% 0F 7205
5409	0.750729
479	0.066482
436	0.060514
336	0.046634
267	0.037058
158	0.021929
43	0.005968
39	0.005413
22	0.003053
6	0.000833
4	0.000555
2	0.000278
1	0.000139
1	0.000139
1	0.000139
1	0.000139
	RECORD COUNT 5409 479 436 336 267 158 43 39 22 6 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3.3. Institutional Affiliation of Global Warming Publications

Records on the subject could originate from single, multiple or corporate authors who were affiliated to singular or multiple institutions. A total of 3427 institution names or affiliations were noted. 3367 institutional name values were outside display options, while 1062 records (14, 7%) did not contain data in the field being analyzed.

Table 4. Global Warming by Institutional Affiliation in Web of Science 1980-2007

NUMBER	RANKING	INSTITUTIONS	RECORD COUNT	% OF 7205	THE TIMES CITED	AVER. CIT.PER PAPER	AVER.CIT. PER YEAR	h- INDEX
1	1	CHINESE ACAD SCI	123	0.017071	584	4.75	34.35	10
2	2	NASA	90	0.012491	3,885	43.17	185	37
3	3	NATL CTR ATMOSPHER RES	89	0.012353	3,938	44.25	171.2	29
4	3	NOAA	89	0.012353	3225	36.24	153.6	34
5	4	UNIV TOKYO	82	0.011381	737	8.99	40.94	13
6	5	MIT	77	0.010687	1783	23.16	71.32	18
7	6	UNIV CALIF BERKELEY	74	0.010271	1515	20.47	79.74	21
8	7	COLUMBIA UNIV	68	0.009438	2536	37.29	140.9	27
9	8	PENN STATE UNIV	65	0.009022	2140	32.92	107	20
10	8	PRINCETON UNIV	65	0.009022	1675	25.77	93.06	22
11	8	RUSSIAN ACAD SCI	65	0.009022	585	9	36.56	14

12	9	UNIV E ANGLIA	64	0.008883	1569	24.52	56.04	20
13	10	STANFORD UNIV	60	0.008328	2601	43.35	104	21
14	11	UNIV WASHINGTON	58	0.00805	1484	25.15	78.11	17
15	12	UNIV COLORADO	55	0.007634	1292	23.49	71.78	24
16	13	US EPA	53	0.007356	663	12.51	34.89	14
17	14	UNIV READING	51	0.007078	1153	22.61	64.06	16
18	15	UNIV WISCONSIN	50	0.00694	892	17.84	44.6	17
19	16	UNIV TORONTO	47	0.006523	689	14.66	40.53	14
20	17	HARVARDUNIV	45	0.006246	878	19.51	46.21	16
21	18	CSIRO	43	0.005968	1329	30.91	69.95	18
22	18	UNIV CALIF SAN DIEGO	43	0.005968	1291	30.02	67.95	14
23	19		42	0.005829	991	23.6	55.06	16
24	19		42	0.005829	829	19 74	43.63	14
	10	MAX PLANCK INST		0.000020	020	10111	10.00	
25	20	METEOROL	41	0.00569	1314	32.05	73	18
26	21		39	0.005413	528	13.54	29.33	13
27	21	UNIV MARYLAND	39	0.005413	1098	28.15	57.79	16
28	21		39	0.005413	910	23.33	50.56	15
29	22		38	0.005274	751	19.76	39.53	12
30	23		36	0.004997	1104	30.67	61 33	14
31	20	SWEDISH UNIV AGR SCI	35	0.004858	723	20.66	40 17	10
32	25	RUTGERS STATE UNIV	34	0.004000	1287	37.85	67 74	17
32	25		34	0.004719	554	16 29	29.16	11
34	25		34	0.004719	822	24.18	45.67	1/
25	25		24	0.004719	427	12 56	43.07	14
36	25		24	0.004719	427	25.47	20.47 54.12	10
27	20		24	0.004719	000	20.47	54.12	12
31 20	20	CNDS	34	0.004719	979 640	20.79	04.39 45 71	12
30	20		33	0.00458	460	19.39	40.71	13
39	20		33	0.00458	109	5.12	16.5	0
40	20		33	0.00458	201	20.65	10.5	10
41	20		33	0.00458	1016	30.65	30.30	13
42	20		33	0.00458	295	0.94	15.53	10
43	20		33	0.00458	4000	25.79	47.28	13
44	20		33	0.00458	1303	39.48	72.39	16
45	27	SCI	30	0.004164	331	11.03	22.07	Q
40	27		30	0.004164	692	22.72	22.01 15 17	14
40	27		20	0.004104	1101	22.73	45.47	14
47 40	27		30	0.004164	1104	39.47	20.04	10
40	21		30	0.004104	220	10.76	20.94	10
49 50	20		29	0.004025	370	12.70	21.70	10
50	29		20	0.003000	409	74.07	20.00	12
51	30		27	0.003747	1927	10.02	91.76	15
52	30		27	0.003747	538	19.93	26.9	9
53	30		27	0.003747	080	25.41	38.11	12
54	30		27	0.003747	1344	49.78	84	9
55	30		27	0.003747	219	8.11	16.85	6
56	30		27	0.003747	705	26.11	47	12
57	31	DUKE UNIV	26	0.003609	463	17.81	28.94	10
58	31	UNIV MICHIGAN	26	0.003609	540	20.77	28.42	12
59	32	FORD MOTOR CO LAWRENCE LIVERMORE NATL	25	0.00347	261	10.44	14.5	7
60	32	LAB	25	0.00347	651	26.04	38.29	10

3.4 Author Productivity on Global Warming Literature

'Anon' authors refer to records without author fields. A total of 13573 authors published articles dealing with global warming. It was noted that 13520 author values were outside the display option.

Table 5: Publications count by authors,	, ISI, 1980-2007

No	Pank	AUTHORS	RECORD	% OF	Sum of times	Average citation	Average citation	H- Index
NU. 1	Nalik		200	0.027750	cileu	per item	per year	muex
2	1		30	0.027759	٥	0.3	0.45	2
2	י ר	FLANCE, F	30	0.004104	951	22.72	0.43 60.70	16
3	2	HILEMAN R	20	0.003009	22	1 /2	1 57	3
4	3	MALLINGTON TI	23	0.003192	255	1.43	10.07	7
5	4	WALLINGTON, IJ	22	0.003053	1 200	66.5	10.21	17
7	5		20	0.002770	1,550	12 70	14.56	7
0	0	RATO M	19	0.002037	1 266	13.79	74.30	16
0	0		19	0.002037	1,200	12 22	14.47	6
9 10	7	KEDD DA	19	0.002498	54	12.22	13.71	4
10	7		10	0.002498	250	10.44	2.7	10
10	/ 0	NEAVER, AJ	10	0.002496	1 241	19.44	21.00	16
12	0	KUEDT, K	17	0.002339	1,241	10	73	8
13	9		16	0.002221	000	30	10 07	0 8
14	9		16	0.002221	207	10.09	19.07	7
10	10		15	0.002082	715	0.07	25 75	7
10	10		15	0.002082	715	47.07	35.75	0
17	11	HARTE, J	14	0.001943	300	25.36	25.30	9
10	11	MANADE, S	14	0.001943	53Z	50 64	35.47	11
19	11	MEEHL, GA	14	0.001943	131	52.64	46.06	10
20	11	RUECKNER, E	14	0.001943	496	35.43	27.50	10
21	12		13	0.001804	400	30.77	23.53	9
22	12	ISURUTA, H	13	0.001804	243	18.69	16.2	11
23	13		13	0.001804	572	44	20.43	11
24	13	WUEBBLES, DJ	13	0.001804	176	13.54	11.73	9
25	14	KRUEZE, C	12	0.001666	67	5.58	3.94	4
26	14	LAL, R	12	0.001666	231	19.25	38.5	0
27	14	MASON, NJ	12	0.001666	80	0.67	11.43	10
28	14	MITCHELL, JFB	12	0.001666	1,505	125.42	83.61	10
29	14	MOSIER, AR	12	0.001666	315	26.25	17.5	0
30	14		12	0.001666	143	11.92	10.21	9
31	15	ALDHOUS, P	11	0.001527	16	1.45	0.84	2
32	15	BALLING, RC	11	0.001527	68	6.18	3.58	ວ ວ
33	15		11	0.001527	860	78.18	95.56	0
34	15		11	0.001527	146	13.27	8.11	6
35	15	KARECKI, S	11	0.001527	80	1.27	1.21	0
36	15	SCOTT, A	11	0.001527	14	1.27	1.17	7
37	15	WANG, WC	11	0.001527	272	24.73	14.32	10
38	15	WASHINGTON, WM	11	0.001527	708	64.36	39.33	10
39	15		11	0.001527	181	16.45	12.07	5 1
40	15	ZURER, P	11	0.001527	1	0.09	0.05	I C
41	16	AERIS, R	10	0.001388	225	22.5	16.07	0
42	16	BRALOWER, IJ	10	0.001388	330	33	27.5	0
43	16	CALDEIRA, K	10	0.001388	191	19.1	10.61	6
44	16	CALLAGHAN, TV	10	0.001388	183	18.3	11.44	5
45	16		10	0.001388	39	3.9	3.9	4
46	16	JOOS, F	10	0.001388	363	36.3	36.3	8
47	16	MENDELSOHN, R	10	0.001388	243	24.3	16.2	1
48	16	NORDHAUS, WD	10	0.001388	583	58.3	34.29	6
49	16	OPPENHEIMER, M	10	0.001388	143	14.3	8.94	6

76	19	Walther,GR	5	0.00111	877	175.4	125.29	4
52	16	YAMASAKI, A	10	0.001388	32	3.2	2.67	3
51	16	STOCKER, TF	10	0.001388	391	39.1	39.1	9
50	16	PATZ, JA	10	0.001388	223	22.3	17.15	6

3.4. Subject Coverage of Global Warming Research/Publications

A total of 197 subject areas were captured. One hundred and five record values were outside the display option, while three records did not contain data in the field being analyzed.

Table 6: Global Warming by Subject 1	Domain				
	RECORD	% OF		RECORD	% OF
SUBJECT AREA	COUNT	7205	SUBJECT AREA (COUNT	7205
ENNIDONMENTAL COLENCES	1496	0 100206	METALLURGY & METALLURGICAL ENCINEEDIN	C 51	0.007078
METEODOLOCY & ATMOSPHEDIC	1430	0.199506	CONSTRUCTION & RUILDING	G 91	0.007078
SCIENCES	923	0 128105	TECHNOLOGY	45	0.006246
Sourceus	020	0.120100	NUCLEAR SCIENCE &	10	0.000240
MULTIDISCIPLINARY SCIENCES	729	0.10118	TECHNOLOGY	45	0.006246
			PHYSICS, ATOMIC, MOLECULAR	2	
GEOSCIENCES, MULTIDISCIPLINARY	665	0.092297	& CHEMICAL	45	0.006246
			BIOCHEMISTRY & MOLECULAR		
ECOLOGY	612	0.084941	BIOLOGY	43	0.005968
ENERGY & FUELS	597	0.082859	LIMNOLOGY	41	0.00569
ENGINEERING, CHEMICAL	399	0.055378	EVOLUTIONARY BIOLOGY	38	0.005274
ENVIRONMENTAL STUDIES	376	0.052186	AGRICULTURAL ENGINEERING	37	0.005135
ENGINEERING, ENVIRONMENTAL	314	0.043581	SOCIAL ISSUES	37	0.005135
GEOGRAPHY, PHYSICAL	275	0.038168	SOCIOLOGY	36	0.004997
			HUMANITIES,		
ECONOMICS	235	0.032616	MULTIDISCIPLINARY	35	0.004858
PLANT SCIENCES	202	0.028036	ENTOMOLOGY	34	0.004719
	100		SOCIAL SCIENCES,		
WATER RESOURCES	199	0.02762	INTERDISCIPLINARY	32	0.004441
CHEMISTRY, MULTIDISCIPLINARY	191	0.026509	LAW	30	0.004164
OCEANOGRAPHY	184	0.025538	PUBLIC ADMINISTRATION	30	0.004164
MADINE & EDECUMATED DIOLOCY	109	0.095200	TECHNOLOCY	20	0.004164
MARINE & FRESHWATER BIOLOGI	165	0.020599	MATERIALS SCIENCE COATING	- 3U	0.004164
THERMODVNAMICS	183	0.025300	& FILMS	10 20	0.004025
THERWOOD TWANNES	105	0.020000	MATHEMATICS	20	0.004025
			INTERDISCIPLINARY		
SOIL SCIENCE	163	0.022623	APPLICATIONS	29	0.004025
BIODIVERSITY CONSERVATION	159	0.022068	ORNITHOLOGY	29	0.004025
ENGINEERING, MECHANICAL	134	0.018598	ASTRONOMY & ASTROPHYSICS	28	0.003886
			ENGINEERING,		
FORESTRY	134	0.018598	MULTIDISCIPLINARY	28	0.003886
GEOGRAPHY	105	0.014573	POLYMER SCIENCE	28	0.003886
ENGINEERING, CIVIL	104	0.014434	ENGINEERING, AEROSPACE	27	0.003747
AGRONOMY	96	0.013324	GENETICS & HEREDITY	27	0.003747
ENGINEERING, PETROLEUM	92	0.012769	BUSINESS	25	0.00347
GEOCHEMISTRY & GEOPHYSICS	92	0.012769	ELECTROCHEMISTRY	25	0.00347
			HISTORY & PHILOSOPHY OF		
BIOLOGY	91	0.01263	SCIENCE	24	0.003331
MECHANICS	91	0.01263	MICROBIOLOGY	24	0.003331
PHYSICS, APPLIED	84	0.011659	FOOD SCIENCE & TECHNOLOGY	Z 23	0.003192
CHEMISTRY, PHYSICAL	79	0.010965	PHYSICS, CONDENSED MATTER	23	0.003192
PHYSICS, NUCLEAR	77	0.010687	ENGINEERING, INDUSTRIAL	22	0.003053
PUBLIC, ENVIKUNMENTAL &		0.010007		00	0.0000
DUCUPATIONAL HEALTH	77	0.010687	MANAGEMENT DHYSIOLOCY	22	0.003053
TALEON TOLOG I	10 73	0.010409	CHEMISTRY ANALVTICAL	21	0.002915
1001001	10	0.010102	OTHINI , ANALI HOAL	20	0.004110

AGRICULTURE, MULTIDISCIPLINARY ENGINEERING, ELECTRICAL &	72	0.009993	SOCIAL SCIENCES, MATHEMATICAL METHODS AGRICULTURE, DAIRY & ANIMAL	20	0.002776
ELECTRONIC	72	0.009993	SCIENCE	19	0.002637
GEOLOGY	70	0.009715	BUSINESS, FINANCE INFORMATION SCIENCE &	19	0.002637
POLITICAL SCIENCE	68	0.009438	LIBRARY SCIENCE	18	0.002498
BIOTECHNOLOGY & APPLIED					
MICROBIOLOGY	65	0.009022	TRANSPORTATION	17	0.002359
MATERIALS SCIENCE,					
MULTIDISCIPLINARY	64	0.008883	BIOPHYSICS	16	0.002221
			AGRICULTURAL ECONOMICS &		
PLANNING & DEVELOPMENT	59	0.008189	POLICY	15	0.002082
			COMPUTER SCIENCE,		
			INTERDISCIPLINARY		
MEDICINE, GENERAL & INTERNAL	58	0.00805	APPLICATIONS	15	0.002082
			COMPUTER SCIENCE,		
CHEMISTRY, APPLIED	57	0.007911	SOFTWARE ENGINEERING	15	0.002082
FISHERIES	52	0.007217	SPECTROSCOPY	15	0.002082
PHYSICS, MULTIDISCIPLINARY	52	0.007217	STATISTICS & PROBABILITY	15	0.002082
INTERNATIONAL RELATIONS	51	0.007078	VETERINARY SCIENCES	15	0.002082

3.5. Language

English remained the dominant language used by research publications globally.

Table 7: Global Warming Publications by Language LANGUAGE RECORD COUNT % OF 720

LANGUAGE	RECORD COUNT	% OF 7205
ENGLISH	7060	97.99%
JAPANESE	42	0.58%
FRENCH	35	0.49%
GERMAN	27	0.37%
RUSSIAN	13	0.18%
SPANISH	9	0.12%
CHINESE	8	0.11%
HUNGARIAN	3	0.04%
PORTUGUESE	3	0.04%
CZECH	2	0.03%
NORWEGIAN	1	0.01%
POLISH	1	0.01%
ROMANIAN	1	0.01%

3.6. Trends and Growth of Global Warming Research and Literature

Fig. One : Published items in each year

Published Items in Each Year

Citations in Each Year

Fig. 2; Citation in Each Year 1980-2007

4. Discussions and Conclusions

Global warming is increasingly becoming a major area of multidisciplinary research right so because of the growing interest and concern of the causes and consequences of the emerging catastrophe that requires proactive intervention before it is too late. This concern has raised scientific latitude among scholars, countries, institutions and information providers on the emerging need to diagnose climate change as a human induced incident. The study found that a total of 116 countries produced one or more publications on global warming, with the USA (2572; 35.7%), England (834; 11.6%) and Japan (546; 7.6%) leading the pack with 3952 (54.85%) publications. In contrast, while the contribution of African countries to global warming research exists, the results indicate that it is insignificant, as noted by the participation of 18 (of 53) countries, with South Africa (46), Kenya (14) and Egypt(7) being among the contributors. It is further noted that an

overwhelming number of journals originate from English speaking countries such as the USA and the UK. The contribution of non-English [first] language speaking countries such as Japan, Germany, France, China, the Netherlands and Sweden was, however, found to be significant, as these six countries were in the list of the world's top ten contributors. English in itself dominates because more countries publish their research using the language. We noted that the number of publications in English is higher in non-English speaking countries and institutions when compared to the publication output in home languages such as Japanese, French, German and Russian. For example, China's country and institutional counts surpass the publication count in Chinese by many folds, suggesting that increasingly, the Chinese could be publishing their research in English. We also believe that the increase of publications in English could also be attributed to an increase in international collaborative research and co-publications, where English becomes the 'compromise' language of publication. Also, the use of the English language increases visibility, accessibility, collaboration and publication in international scholarly research outlets that are both web and print based.

The multidisciplinary nature of global warming research is confirmed by the variety of journals found in the domain. The top five journals, out of a total 1558, were Nature (199; 2.8%), that also accounts for the highest impact factor in the domain, Geophysical Research Letters (175; 2.4%), Climatic Change (161; 2.2%), Science (137; 1.9%) and New Scientist (116; 1.6%). The subject distribution of the records was also diversified, with a strong representation from environmental sciences and studies, meteorology and atmospheric sciences, multidisciplinary sciences, geosciences, ecology, energy and fuels and engineering sciences. The subject coverage was largely in the pure sciences, followed by applied sciences. Records originating from social sciences and humanities appear insignificant.

Most (75%) of the publications are in the form of journal articles. The rest (25%) appear in 15 other document types, with editorial material, reviews, letters, news items and book reviews topping the list with more than 100 records respectively.

Noted further that a large part of Global warming research takes place within the Universities. Although Chinese Academy of Science leads in item/publication counts (see table 4), the number of citations and the h-index scores is lower when compared to those reflected for top institutions (e.g in Table 4). The highest h-index scores are found in the USA institutions suggesting sustained quality research output in the domain. This augurs well for a country known for the highest global warming emissions. We noted that research on global warming is growing rapidly. For example, the growth of research publications in the domain since 1990 has increased by over 300%, with insignificant rises and falls from 1990 to 2002.and steady growth from 2002 to 2007. Also, that whereas there is a correlation between total cites, average cites per item and per year and the h-index, as reflected on tables 1,2,4 and 5,(e.g on country, source, institution, author) there is no correlation between the four variables and the item counts. It is therefore suggested that more attention be given to citations and h-index for impact factor and item quality judgment for policy decisions.

We conclude, by reflecting on reviewed literature and research on Global warming. that focuses on Global warming characteristics, causes. that Global consequences or effects, preventions, warming is an international, multidisciplinary problem of growing magnitude. It presents major challenges to research, policy, recordal system or documentation, knowledge sharing and interventions of all kinds. Countries and institutions that are currently lagging behind in global warming research such as those in Africa, particularly those that are known for high greenhouse effect emissions should get more involved in active research in the domain. Bibliometric and informetric research provides useful information for the development of political. economic, social and technological policy in general as well as research policy and evaluation, in particular, in a burgeoning domain that is likely to benefit and shape, politics, research, and research policy and information services. We also believe that Library services can benefit from such studies as they would have a positive impact on library collection development, information retrieval and user services. We recommend that information professionals and librarians serving the research and scholarly/academic community should take cognizance of, and be engaged in informetric research in their specialist subject domain to strengthen information retrieval capacity and effective service delivery. In depth research and analysis is ongoing in the highlighted areas under the results section of this paper, including work on collaboration in global warming research

5. References

Berger, A., Melice, J.L. and Loutre, M.F. (2005). On the origin of the 100-kyr cycles in the astronomical forcing. Journal of Paleoceanography, Vol.20,1-9. [Online]. <u>http://www.agu.org/pubs</u>.Accessed April 10, 2008

Brown, Donald A.(2003), The importance of expressly examining global warming policy issues through an ethical prism. Pennsylvania Consortium

For Interdisciplinary Environmental Policy, C/O The Pennsylvania Department of Environmental Protection Harrisburg,

Hussain, M.A and Ansari, R.K. (2006). Statistical Aspects of Global Warming Dynamics. *The Arabian Journal for Science and Engineering*, Volume 32, Number 2A,189-194.

IPCC (2007), Intergovernmental Panel on Climate Change, Fourth Assessment Report, "Climate Change 2007: The Physical basis", Summary for policy Makers.[Online] http://www.ipcc.ch/SPM2feb.pdf. Accessed 20 April 2008

Lancaster, F.W. (1991). Bibliometric methods in assessing productivity and impact of research. Bangalore: Sarada Ranganathan Endowment for Library Science.

Mathews, J. (2007). Seven Steps to curb global warming: Energy Policy 35, 4247-4259.[Online] http://www.eslsevier.com/locate/enpol. Accessed 18 April 2008

Nodvin, S.C. (2008). "Global Warming." In: *Encyclopedia of Earth*.Eds. Cutler.J.Cleveland (Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment).[Online] <u>http://www.eoearth.org/article/Global_warming</u>. Accessed 30 March 2008

Omer, A.M. (2007). Energy, environment and sustainable development. Renewable and Sustainable.Energy Reviews, doi:10.1016/j.rser.2007.05.001.p.1-8..

Reay, D. (2008). "Greenhouse gas." In: *Encyclopedia of Earth*.Eds. Cutler.J.Cleveland (Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment).[Online] <u>http://www.eoearth.org/article/Greenhouse_gas</u>. Accessed 10 March 2008

Ren, Karoly and Leslie, L.M. (2007). Temperate Mountain Glacier-Melting Rates for the Period 2001-30: Estimates from Three Coupled GCM Simulations for the Greater Himalayas. *Journal of Applied Meteorology and Climatology*, Volume 46, 890-894.

Robick, A. and Oppenheimer, C. (2003): Volcanism and the Earth's Atmosphere, Geophysical Monograph 139, American Geophysical Union, Washington, DC.

Rousseau, Ronald (2008), Publication and Citation Analysis as a tool for Information Retrieval. In, Dion Goh and Schubert Foo(eds), *Social* Information retrieval Systems. Emerging technologies and applications for searching the web effectively. Hershey (PA); Information Science Reference (IGI Global), 252-267.

Sautter, J.A. and Switzer, C. (2008). A Change in Climate? How State Regulators Are Making Decisions in Response to Global Warming. *The Electricity Journal*, Vol 21, issue 11040-6190, 38-41

Tao, F., Hayashi, Y., Zhang, Z., Sakamoto, T. and Yokozawa, M. (2007). Global warming, rice production, and water use in China: Developing a probabilistic assessment. *Journal of Agriculture and Forest Meteorology*, Vol.148,94-99.

Van Reenen, R. 2007. The truth about climate change : global warming. *Enterprise Risk*, Vol 1 (3), 4-7.

Walther, G.O., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Guldberg, O.V., and Bairlein, F. (2002). Ecological response to recent climate change. Review article. *Nature*, Vol 416, 389-391.

Zhang, Q., Gemmer, M., and Chen, J. (2006). Climate changes and flood/drought risk in the Yangtze Delta, China, during the past millennium. *Quaternary International Journal,* Vol. 176-177, 62-69.